About the Company
WASP (World’s Advanced Saving Project) was founded in 2012 by its founder, Massimo Moretti, as a source of the CSP (Centro Sviluppo Progetti) company founded in 2003. The company is located in the city of Massa Lombarda near Bologna, Italy. WASP currently exists. of approx. 20 full-time employees and approx. 10 people working freelance. Of these, 4 people are employed to do R&D. They currently have reportedly a healthy and relatively steep growth curve. WASP develops innovative projects in a wide range of areas and has used 3D printers in almost every context as a way to achieve its goal. WASP generally has a vision of doing everything they can to save the world and is constantly using this vision to show the way in which new projects they will work on. Thus, WASP does not develop 3D printers for sale, but develops 3D printers to address specific needs to achieve their goals (saving the world). For all their purposes, they use the same types of 3D printer, where they then change the print head depending on the material they want to print with. Their printing method is called Delta printers, where the printer is controlled by three arms mounted on three vertical columns. The arms can then move up and down the columns depending on which direction the printer should move
The vision is to save the world and the way to do this is to fill a container with equipment for a 3D printer. The equipment must be so easy to handle that it can be done by a person from the third world without the person having any training. Using the 3D printer, you can make advanced equipment where the only thing the person (s) must do is feed the printer with printer material. Examples of items that the printer needs to make are medical equipment, chairs, tables and buildings / cabins. WASP focuses on Maker’s economy1, ie. focus on the use of local materials and in-house production. Consequently, there is no transport costs and thereby a reduction in CO2 consumption.
WASP has initiated many different development projects and has made them develop printers that can print in the following materials: – Plastics (dentures, chairs, tables, visualizations of products, etc.) – Ceramics (art, etc.) – Silicone (medical equipment, dentures, soles, etc.) – Smiles (goal: cabins) – Concrete (target: cabins) A few examples of their development projects are listed below:
Projects
1.2.1 Medical equipment (dentures, corsages, etc.): 1 http://www.wasproject.it/w/en/maker-economy/ 3D Printers – State of the art Page 4 of 15 1.2.2 Plant cellar: Prototype of 3m tall plant basin where all the plants are watered from above and all the water runs through. 1.2.3 Toy printers (for teaching and play) 3D Printers – State of the Art Page 5 of 15 1.2.4 Chairs and tables 1.2.5 Plaster and ceramics (art, etc.) 3D Printers – State of the Art Page 6 of 15 1.2.6 Clay hut or concrete hut WASP wants to be able to print clay huts or concrete huts to provide shelter for people in the third world and therefore they have launched the BIG Delta WASP project, where they will print on a large scale and with clay or concrete,
The company is 100% self-financing and finances their business through the sale of their 3D printers and WASP is experiencing great growth in sales of their 3D printers. In 2015, they sold approx. 1500 printers.
Printer
The technology / printer WASP generally uses a printer technology they call Delta. It is therefore the same principle they use for their large and “small” printers. It consists of 3 vertical columns which are placed on the radius of a circle and which have an angle of 120 degrees. Up and down of these vertical columns is mounted an arm which is connected to the printhead, which is basically located in the center of the circle. By moving the arms up and down, the print head can move in different directions and the three arms are coordinated so that the direction in X, Y and Z direction is completely controlled. Due to the sloping arms, some of the vibrations from the movement of the printer will be transformed into vertical movements and therefore WASP states that this technology can provide greater precision of the print than traditional “horizontal” printers. 2.1.1 Small Delta WASP The Small Delta WASP produces the fastest plastic printers on the market and can print up to 1000mm / s, which is 3 times faster than other printers. Massimo further indicated that they were aiming to double this rate over the next year. Another characteristic of their small printers (which are very sensitive to vibration due to the high speed) is that the extruder head is placed in elastics above the actual printer and therefore the weight of this extruder does not affect the vibrations in the printhead. The printers can print in layer thicknesses from 50 microns to 2-3mm for plastic printing. 2.1.2 BIG Delta WASP2 BIG Delta WASP is WASP’s large-scale print project in buildings / cabins. As previously described, WASP has a goal of being able to print buildings / cabins for groups in the third world. BIG Delta WASP has already held an event where they have set up a 12m high printer. This took place from 18-20. September 2015 in their hometown of Massa Lombarda.
WASP has orally been awarded a field by the mayor of the city where they can set up their BIG Delta printer. When we visited them on April 6, 2016, this was not approved in writing, so they were still waiting to be able to set up the printer again. We saw the printer in its packed form. We also saw their print head incl. container, mixer auger and auger rotor machine. Massimo’s experience with print with concrete was that it was of utmost importance that the concrete was constantly moving (brought forward). You cannot have a mix that is still in the container. That’s why he has good experiences with an open auger. The principle of supplying material is that the container is fed with material via a pump which is on the ground. 3D Printers – State of the Art Page 9 of 15 the outside printer and pump are fed with material from 2 pcs. concrete containers in the traditional way. Massimo told that the scaffold as their printer one is made of is very stable and it is actually not necessary to stiffen the system of bar stools. In addition, he indicated that the size of the printer is scalable, as the scaffold can only be increased or decreased as needed. Due to the very limited time in which they have actually had the printer standing, only very small items have been printed so far. In the coming future, when the printer is standing permanently, they will most likely gain a lot more experience with the printer and with large-scale printing. 2.1.2.1 BIG Delta WASP (scaled down) To gain experience with the clay and concrete materials, BIG Delta WASP has set up a smaller “large-scale” printer, see image below. This printer can print objects of approx. 1m in diameter and 1m in height.
Material
WASP already had good experiences with printing in concrete and they did not think it was a problem to mix a concrete that had the right density / viscosity, so that the material could be fed into the printer and at the same time, so it had a suitable hardness for the layers did not settle (the lower layers float out when the above layers add extra weight to them). Their experience was that preferably between 10-30 minutes should pass between each layer in order for the above relationship to be achieved. If there was more than 30 minutes, it was possible that there was no suitable connection between the layers (layering). Their experience was that it may be a problem for 10min between each layer to print small objects, but it should not be a problem for large objects and you rarely achieve more than 30 minutes. Massimo stated that he did not think there was a major problem in making a concrete that had the desired properties. They had not done pressure testing of the concrete yet, but had achieved a fine structure and bonding with the concrete they have used in the above pictures (though very fine grained concrete). They also had good experiences with printing clay. However, the WASP had faced some challenges in printing concrete containing Geopolymers3 instead of cement, but he thought they were quite far around this. By printing with geopolymers, the building’s CO2 footprint is reduced by approx. 80% compared to traditional cement based concrete. Massimo showed a piece of concrete made with geopolymers, see the picture below:
In August 2015, WASP completed its first major project with a concrete printer, namely a concrete beam cast in seven smaller sections, which are then subsequently assembled into one beam via reinforcing iron. The beam has been primarily used to test the 3D concrete prints principles. In September 2015, for the first time, WASP erected its 12m high concrete printer at a 3 day event where the printer was primarily shown and very small concrete castings were cast. The event was primarily a PR event. In the future, WASP wants to build housing for third world countries in local materials.